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@ From finite elements to the Euler characteristic.

o Finite element spaces let us numerically solve PDEs.

e Using naive finite element spaces can give us wrong answers.

e Finite element spaces that do work well are related to the
Euler characteristic V — E + F.

@ From the Euler characteristic to cohomology (1500s—-1930s).
e An introduction to Euler characteristic and cohomology.
e Both numerical analysis and cohomology are ways of going
between the continuous world and the discrete world.
@ Some finite element spaces developed by numerical analysts in
the 1970s and 1980s were actually rediscoveries of spaces
developed by geometers decades earlier.

© From cohomology to finite elements (Arnold, Falk, Winther,
2006-2010).

e Finite element spaces that respect cohomology work well.
e Finite element spaces that do not respect cohomology might
give wrong answers.
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Numerically solving PDEs
Sample Problem

@ Givenf: Q2 =R, findu: Q =R
such that

d%u  0%u

a2 Tar !

and u vanishes on the boundary.

@ To solve numerically, we must discretize.

@ We need a finite-dimensional space of functions that
“approximates” the full infinite-dimensional space of possible
u.
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Finite-dimensional function spaces

Continuous piecewise linear functions to R

Continuous piecewise polynomial functions to R

oo
e

Figure: Piecewise quadratic (left) and piecewise cubic (right)
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Degrees of freedom

Piecewise linear/quadratic/cubic continuous scalar-valued functions

o

Degrees of freedom (DOFs)

@ One value per degree of freedom (blue dot)

e yields a unique function on each triangle, and
e enforces continuity between adjacent triangles.

Piecewise linear RY
Piecewise quadratic | RV+E
Piecewise cubic RV+2E+F
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What about vector fields?

A naive approach
Use continuous piecewise polynomial vector fields.

Eigenvalues of the curl curl operator

On a square domain, find a vector field u (with appropriate
boundary conditions) such that curl curl v = Au.

Bad things happen with the naive approach (AFW, 2010)

; : : _ @ Using vector fields with full
1 L continuity yields false
eigenvalue A = 6.

4 EO S : @ To get the right eigenvalues,

P we need better finite

o element spaces of vector
fields.
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Gradients of piecewise smooth scalar fields
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Figure: A piecewise linear function (left) and its gradient (right)

Yakov Berchenko-Kogan The Combinatorics of Finite Element Methods



Finite-dimensional spaces of vector fields

Continuity conditions

@ We want only tangential continuity, not full continuity.

Figure: Full continuity (left) vs. tangential continuity (right)

@ Why do these spaces work better?

o Gradients of continuous piecewise smooth scalar fields only
have tangential continuity.

o Gradients of “valid objects” should be “valid objects”.

e Having well-defined line integrals requires only tangential
continuity.
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Degrees of freedom (DOFs)

DOFs of piecewise linear vector fields with tangential continuity?

@ Values should

e uniquely specify a linear vector field on each triangle, and
e enforce tangential continuity between adjacent triangles.

Higher degree?

Periodic Table of the Finite Elements
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Complexes

A discrete complex

continuous grad tangentially continuous curl discontinuous
piecewise cubic —>  piecewise quadratic —— piecewise linear
scalar fields vector fields scalar fields

RV+2E+F

R3E+3F

REIF

Euler characteristic

@ This complex has the right Euler characteristic:

(V+2E+F)—(BE+3F)+3F=V—E+F.

Yakov Berchenko-Kogan The Combinatorics of Finite Element Methods



Euler characteristic

V — E + F =2 (Maurolico, 1537)

Vertices Edges Faces Euler characteristic:
\% F F x=V-E+F

Tetrahedron & 4 6 4 2
Hexahedron or cube ‘ 8 12 6 2
Octahedron ‘ 6 12 8 2
Dodecahedron o 20 30 12 2
Icosahedron ‘ 12 30 20 2

Figure: Wikipedia, “Euler characteristic”

Name Image

Works for all convex polyhedra

Soccer ball:
V_-E+F=60-90+32=2.
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Euler characteristic for other shapes

Name Image X

.
-

Interval

Disk

Circle Q 0

Sphere [ | 2

Torus

(Product of L—_— 0
two circles)
\ !
Double torus A -2
N
Triple torus \ﬂ -4

Figure: Wikipedia, “Euler characteristic”
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From Euler characteristic to cohomology (1930s)

The continuous setting

Vector calculus in the plane (or on a surface)

. grad . curl .
scalar fields ————— vector fields ——— scalar fields

o If E = grad ¢, then curl E = 0. always true
@ If curl E =0, then E = grad ¢ for some ¢. not always true
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curl E=0 but E # grad ¢

The electric field around a solenoid
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Figure: Wikipedia, “lrrotational vector field”
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de Rham cohomology

The de Rham complex

. grad . curl .
scalar fields ————— vector fields ———— scalar fields

The first cohomology group H*

@ Informally, the first cohomology group of a domain € is the
set of counterexamples:

e Vector fields E on Q
@ whose curls are zero, but
@ which aren't gradients of a scalar field.
o Caveat: If E is a counterexample, then so is E’ := E + grad .
o curl E" =curlE+0=0.
o If E is not a gradient then neither is E’.

@ In the first cohomology group H!, we view E and E’ as
“equivalent counterexamples” .

@ dim H! counts the number of “holes’ in the domain.
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de Rham cohomology

The de Rham complex

rad
scalar fields ———— vector fields ———— scalar fields

S]
0
=
=L

de Rham cohomology, informally

o HO: scalar fields ¢ whose gradients are zero.

e H!: vector fields E whose curls are zero but which aren't
gradients.

o H?: scalar fields p which aren't curls.

The zeroth cohomology group H°

o If grad ¢ = 0 then ¢ is constant only for connected domains.
@ So dim H® = 1 for connected domains.

o dim HY counts the number of connected components of the
domain.
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de Rham cohomology

The de Rham complex

(]
=
=

I’ad C
scalar fields ————— vector fields ——— scalar fields

de Rham cohomology, informally

o HO: scalar fields ¢ whose gradients are zero.

@ H1: vector fields E whose curls are zero but which aren’t
gradients.

o H?: scalar fields p which aren't curls.

.

The second cohomology group H?

e For planar domains H? = 0 (every scalar field is a curl).
o For a closed surface S (e.g. sphere), H? is the constants.

o If B is tangent to S then fs curl B = 0 by Stokes’s theorem.
o But [¢1#0,so01isnot a curl.
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From Euler characteristic to cohomology (1930s)

The continuous setting

Name. Image X

Interval

Cohomology tells you the it Q :
Euler characteristic I

|

The Euler characteristic is oise 1
v. - E + F, wee ) :

dim H® — dim H! + dim H2. ==
(Product of L 0

two circles) v

\ h
Double torus A -2
Triple torus. \: - -4
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From Euler characteristic to cohomology (1930s)
The discrete setting

Discrete gradient

5 4

Fundamental theorem of line integrals

/Cgrad¢=¢

for a curve C from point vy to point v;.

Vi
Vo
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From Euler characteristic to cohomology (1930s)
The discrete setting

Discrete curl

curl 10

2
©

Green's/Stokes’s Theorem

/curIE:/E
S C

where C is the boundary of the surface S.
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From Euler characteristic to cohomology (1930s)

The continuous complex (de Rham complex)
rad

. g . curl .
scalar fields ————— vector fields ——— scalar fields

The discrete complex (simplicial cochain complex)

discrete grad discrete curl discrete
scalar fields vector fields scalar fields

RY RE RF

Theorem (De Rham'’s Theorem, 1931)

de Rham cohomology equals simplicial cohomology

Corollary (Euler characteristic)

V — E+ F =dim H® — dim H! + dim H?
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Back to finite elements

We've already seen a different discrete complex

continuous grad tangentially continuous curl discontinuous
piecewise cubic —  piecewise quadratic —— piecewise linear
scalar fields vector fields scalar fields

RV+2E+F R3E+3F

R3F

Euler characteristic and cohomology

@ We saw this complex has the right Euler characteristic:
(V+2E+F)—(BE+3F)+3F=V —-E+F.
@ Moreover, the cohomology is right, too.
e That's why the spaces work well (Arnold, Falk, Winther, 2006).
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Can we interpret simplicial cochains as finite elements?

Yes (Whitney, 1957)

1% E F
R R R
continuous discontinuous
) o | grad span of curl | ) tant
iecewise linear . ——— piecewise constan
P i Whitney forms P :
scalar fields scalar fields

Barycentric coordinates

(the standard simplex)

{(A1, A2, A3) € RS,
|)\1+)\2+)\3:1}

Yakov Berchenko-Kogan

Whitney one-forms:

A dXo — Ao d),
X2 dA3 — A3 d)o,
A3 dA1 — M1 d)s.
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A modern language for vector calculus

The complex

@ Vector calculus:

scalar &rad vector curl vector div  scalar
fields fields fields fields

@ Cartan, 1899:

0-forms 40'* 1-forms L 2-forms L* 3-forms

Fundamental theorem

@ Vector calculus:

o fundamental theorem of calculus/line integrals,
o Green's/Stokes's theorem,
e the divergence theorem.

o Cartan, 1945:
/dw:/ w.
Q 15)9]
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Finite element exterior calculus (AFW, 2006)
The P,AX spaces

Definition (the P,AX spaces)

@ Let 7 be a triangulation of a manifold of dimension n.
o Let P, AX(T) be the space of k-forms that

e are piecewise polynomial of degree at most r, and
e are tangentially continuous.

v

continuous

A° o . ,

PrN(T) piecewise polynomial scalar fields
tangentially continuous

PALN(T) . aneentaly < .
piecewise polynomial vector fields

PAYT) .normaIIy cor.1tinuous .
piecewise polynomial vector fields

discontinuous
P,A(T)

piecewise polynomial scalar fields
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Complexes revisited

We've seen
continuous grad tangentially continuous curl discontinuous
piecewise cubic —>  piecewise quadratic —— piecewise linear
scalar fields vector fields scalar fields
P3NO(T) PoAY(T) P1N?(T)
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Finite element exterior calculus

The P, AX spaces

On a single simplex T

@ The Whitney k-forms have one DOF per k-dimensional face.
o Call their span P; AK(T).
o Note: PoA*(T) C Py AK(T) C PIAK(T).
o Multiply Whitney forms by arbitrary scalar-valued polynomials
of degree at most r — 1. Call the span of these P, AX(T).
o So, P,_1A(T) C P;A(T) C P,A(T).

Definition (the P;"AX spaces on a triangulation)

@ Let 7 be a triangulation of a manifold of dimension n.
o Let P AX(T) be the space of k-forms that

o are in P, A%(T) for each element T of the triangulation, and
e are tangentially continuous.

Duality between P and P~
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Complexes revisited

We've also seen

continuous d discontinuous
gra . cu
piecewise linear ———— Whitney forms ——— piecewise constant
scalar fields scalar fields
e d o d o
Py N(T) Py N(T) Py A(T)
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More complexes

Theorem (Arnold, Falk, Winther, 2006)

For a triangulation T, the cohomology of the complexes

PA(T) —2= PraA(T) —2 - —L P oA(T)

PrA(T) —2— PrAYT) —2— . —L PA(T)

agrees with de Rham cohomology (provided r > n in the first line).

The second line with r =1 is isomorphic to simplicial cochains.

Theorem (Arnold, Falk, Winther, 2006)

We can “mix and match” using any of the maps

PAKT) 5 ProaNH(T),  PAKT) = P ACH(T)

_ d _ _ d
PAAK(T) ~% PAAKI(T),  PrAK(T) -5 ProaAY(T)
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How do finite element spaces yield numerical methods?
Recall our sample problem

@ Given f: Q — R, find u: Q2 — R vanishing on 9L such that

Au=f.
e Equivalently,

/(Au)v = / fv. Vv vanishing on 0.
Q Q

@ Intergating by parts,

— / gradu - gradv = / fv Vv vanishing on 9Q. (1)
Q Q

Galerkin method

@ Given f, solve (1) for u, where u and v are restricted to be in
the finite element space.

@ Get a finite-dimensional linear system of equations.
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Bad things happen if we don't respect cohomology

Eigenvalues of the curl curl operator

On a square domain, find a vector field u (with appropriate
boundary conditions) such that curl curl u = Auw.

Bad things happen if we do not respect cohomology (AFW, 2010)

@ Using vector fields with full
: : continuity yields false
A eigenvalue A = 6.

@ In contrast, using the spaces
== : : we've discussed yields the
0 : : : : correct spectrum.

How does cohomology play a role?

@ dim(ker curl) = oo, so zero eigenspace hard to control.

@ Can control if ker curl = im grad holds on the discrete level.
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Good things happen if we do respect cohomology

Noether's Theorem, conservation laws, and discretization

@ Noether's theorem: a system that is invariant under a
transformation has a corresponding conservation law:
e translation invariance = conservation of momentum
e rotation invariance = conservation of angular momentum
e time-translation invariance = conservation of energy
@ Discretizations that respect Noether's theorem will conserve
these quantities exactly.
e Otherwise, the quantities will be conserved only approximately
and may drift over time.

Charge conservation in electromagnetism / Yang-Mills

@ curl u invariant under u +— u + grad f
e = weighted average [ pf conserved (p is charge).

e continuous setting: all f allowed = p conserved.
o discrete setting: only f in finite element space (Nédélec, 1980).

@ can conserve p even in discrete setting (—, Stern, 2021).
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Further directions
Representation theory

Bases for scalar fields

@ Recall barycentric coordinates:
{(A1, 22, 23) € Ry [ A1+ A2+ A3 =1}
@ Quadratic scalar fields have monomial basis
A0, A3, M2, Aods, A

@ For scalar fields, the monomial basis is invariant under
permuting A1, A2, As.
@ For vector fields, such an invariant basis may or may not exist,
even up to sign.
e In 2D and 3D, depends on the type of finite element space

(e.g. PAL, P~A?), and the polynomial degree modulo 3
(Licht, 2019; —, 2023).
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Further directions

Riemannian geometry

So far we've discussed

o discretizing differential forms:
o differential topology / smooth manifolds.

Riemannian geometry / Riemannian manifolds

@ Must discretize the Riemannian metric:
o Lowest order is just specifying the length of every edge of the
triangulation (Regge, 1961).
o Higher polynomial degree (Li, 2018).
@ Must understand curvature:
o Lowest order scalar curvature is just angle defect.
@ 2D: Gauss—Bonnett. General dimension: Regge, 1961.
e Several papers towards full Riemann curvature tensor in
general piecewise polynomial /smooth setting:

@ various combinations of —, Gawlik, Neunteufel, and others;
2019-2023 and in preparation.
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