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@ What is the finite element method?
e A method for numerically solving partial differential equations.
@ Why am | talking about PDEs / applied math at a
combinatorics / number theory conference?

o Euler characteristic / simplicial cohomology naturally arises in
the study of finite elements.
o Finite element exterior calculus (Arnold, Falk, Winther, 2006).

© That's a cool connection, but does understanding cohomology
actually improve numerical methods?

o Yes.
@ Has anything interesting happened since then?
o Yes.
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Numerically solving PDEs
Sample Problem

@ Givenf: Q2 =R, findu: Q =R
such that

d%u  0%u

a2 Tar !

and u vanishes on the boundary.

@ To solve numerically, we must discretize.

@ We need a finite-dimensional space of functions that
“approximates” the full infinite-dimensional space of possible
u.
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Finite-dimensional function spaces

Continuous piecewise linear functions to R

Continuous piecewise polynomial functions to R

oo
e

Figure: Piecewise quadratic (left) and piecewise cubic (right)
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Degrees of freedom

Piecewise linear/quadratic/cubic continuous scalar-valued functions

o

Degrees of freedom (DOFs)

@ One value per degree of freedom (blue dot)

e yields a unique function on each triangle, and
e enforces continuity between adjacent triangles.

Piecewise linear RY
Piecewise quadratic | RV+E
Piecewise cubic RV+2E+F
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Finite-dimensional spaces of vector fields

Continuity conditions

o If we view a vector field as a tuple of scalar fields, we can use
the above finite-dimensional spaces of scalar-valued functions.
e Doing so yields continous piecewise polynomial vector fields.

@ But we want only tangential continuity, not full continuity.

Figure: Full continuity (left) vs. tangential continuity (right)

o Why do we only want tangential continuity?
e Gradients of continuous piecewise smooth scalar fields only
have tangential continuity.
o Gradients of “valid objects” should be “valid objects”.
e Having well-defined line integrals requires only tangential
continuity.
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Gradients of piecewise smooth scalar fields
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Figure: A piecewise linear function (left) and its gradient (right)
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Degrees of freedom (DOFs)

DOFs of piecewise linear vector fields with tangential continuity?

@ Values should

e uniquely specify a linear vector field on each triangle, and
e enforce tangential continuity between adjacent triangles.

Higher degree?

Periodic Table of the Finite Elements
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Complexes and cohomology

A discrete subcomplex of the de Rham complex

continuous grad tangentially continuous curl discontinuous
piecewise cubic —  piecewise quadratic —— piecewise linear
scalar fields vector fields scalar fields

RV+2E+F R3E+3F

R3F

Euler characteristic and cohomology of triangulated surfaces

@ This complex has the right Euler characteristic:
(V+2E+F)—(BE+3F)+3F=V —-E+F.
@ The cohomology agrees with simplicial/de Rham cohomology.
o (Arnold, Falk, Winther, 2010).
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Whitney forms (Whitney, 1957)

Can we get simplicial cochains?

RY RE RF
continuous grad s of curl discontinuous
piecewise linear Whitney forms piecewise constant
scalar fields scalar fields

Barycentric coordinates

Whitney one-forms:

(the standard simplex)

A1 dAo — A2 d)q,
{(A1, A2, A3) € RE, Ao dA3z — Az d o,
| A1+ X2+ A3 =1} A3 dA1 — A1 d)s.
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Finite element exterior calculus

The P,AX spaces

Definition (the P,AX spaces)

@ Let 7 be a triangulation of a manifold of dimension n.
o Let P, AX(T) be the space of k-forms that

e are piecewise polynomial of degree at most r, and
e are tangentially continuous.

continuous
PA(T) . . .
piecewise polynomial scalar fields
tangentially continuous
PALN(T) . aneentaly < .
piecewise polynomial vector fields
normally continuous
PAYT) v .
piecewise polynomial vector fields
discontinuous
P,A(T)

piecewise polynomial scalar fields
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Complexes revisited

We've seen
continuous grad tangentially continuous curl discontinuous
piecewise cubic —>  piecewise quadratic —— piecewise linear
scalar fields vector fields scalar fields
P3NO(T) PoAY(T) P1N?(T)

Yakov Berchenko-Kogan The Combinatorics of Finite Element Methods



Finite element exterior calculus

The P, AX spaces

On a single simplex T

@ The Whitney k-forms have one DOF per k-dimensional face.
o Call their span P; AK(T).
o Note: PoA*(T) C Py AK(T) C PIAK(T).
o Multiply Whitney forms by arbitrary scalar-valued polynomials
of degree at most r — 1. Call the span of these P, AX(T).
o So, P,_1A(T) C P;A(T) C P,A(T).

Definition (the P;"AX spaces on a triangulation)

@ Let 7 be a triangulation of a manifold of dimension n.
o Let P AX(T) be the space of k-forms that

o are in P, A%(T) for each element T of the triangulation, and
e are tangentially continuous.

Duality between P and P~

Yakov Berchenko-Kogan The Combinatorics of Finite Element Methods



Complexes revisited

We've also seen

continuous d discontinuous
gra . cu
piecewise linear ———— Whitney forms ——— piecewise constant
scalar fields scalar fields
e d o d o
Py N(T) Py N(T) Py A(T)
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More complexes

Theorem (Arnold, Falk, Winther, 2006)

For a triangulation T, the cohomology of the complexes

PA(T) —2= PraA(T) —2 - —L P oA(T)

PrA(T) —2— PrAYT) —2— . —L PA(T)

agrees with de Rham cohomology (provided r > n in the first line).

The second line with r =1 is isomorphic to simplicial cochains.

Theorem (Arnold, Falk, Winther, 2006)

We can “mix and match” using any of the maps

PAKT) 5 ProaNH(T),  PAKT) = P ACH(T)

_ d _ _ d
PAAK(T) ~% PAAKI(T),  PrAK(T) -5 ProaAY(T)
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How do finite element spaces yield numerical methods?
Recall our sample problem

@ Given f: Q — R, find u: Q2 — R vanishing on 9L such that

Au=f.
e Equivalently,

/(Au)v = / fv. Vv vanishing on 0.
Q Q

@ Intergating by parts,

— / gradu - gradv = / fv Vv vanishing on 9Q. (1)
Q Q

Galerkin method

@ Given f, solve (1) for u, where u and v are restricted to be in
the finite element space.

@ Get a finite-dimensional linear system of equations.
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Why do numerical analysts care about cohomology?

Eigenvalues of the curl curl operator

On a square domain, find a vector field u (with appropriate
boundary conditions) such that curl curl u = Auw.

Bad things happen if we do not respect cohomology (AFW, 2010)

@ Using vector fields with full
: : continuity yields false
A eigenvalue A = 6.

@ In contrast, using the spaces
== : : we've discussed yields the
0 : : : : correct spectrum.

How does cohomology play a role?

@ dim(ker curl) = oo, so zero eigenspace hard to control.

@ Can control if ker curl = im grad holds on the discrete level.
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Why do numerical analysts care about cohomology?

Noether's Theorem, conservation laws, and discretization

@ Noether's theorem: a system that is invariant under a
transformation has a corresponding conservation law:
e translation invariance = conservation of momentum
e rotation invariance = conservation of angular momentum
e time-translation invariance = conservation of energy
@ Discretizations that respect Noether's theorem will conserve
these quantities exactly.
e Otherwise, the quantities will be conserved only approximately
and may drift over time.

Charge conservation in electromagnetism / Yang-Mills

@ curl u invariant under u +— u + grad f
e = weighted average [ pf conserved (p is charge).

e continuous setting: all f allowed = p conserved.
o discrete setting: only f in finite element space (Nédélec, 1980).

@ can conserve p even in discrete setting (—, Stern, 2021).
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Further directions
Representation theory

Bases for scalar fields

@ Recall barycentric coordinates:
{(A1, 22, 23) € Ry [ A1+ A2+ A3 =1}
@ Quadratic scalar fields have monomial basis
A0, A3, M2, Aods, A

@ For scalar fields, the monomial basis is invariant under
permuting A1, A2, As.
@ For vector fields, such an invariant basis may or may not exist,
even up to sign.
e In 2D and 3D, depends on the type of finite element space

(e.g. PAL, P~A?), and the polynomial degree modulo 3
(Licht, 2019; —, 2023).

Yakov Berchenko-Kogan The Combinatorics of Finite Element Methods



Further directions

Riemannian geometry

So far we've discussed

o discretizing differential forms:
o differential topology / smooth manifolds.

Riemannian geometry / Riemannian manifolds

@ Must discretize the Riemannian metric:
o Lowest order is just specifying the length of every edge of the
triangulation (Regge, 1961).
o Higher polynomial degree (Li, 2018).
@ Must understand curvature:
o Lowest order scalar curvature is just angle defect.
@ 2D: Gauss—Bonnett. General dimension: Regge, 1961.
e Several papers towards full Riemann curvature tensor in
general piecewise polynomial /smooth setting:

@ various combinations of —, Gawlik, Neunteufel, and others;
2019-2023 and in preparation.
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