Symmetry in Finite Element Exterior Calculus

Yakov Berchenko-Kogan

Pennsylvania State University

April 8-9, 2022

Symmetry of Scalar Elements

$$\mathcal{P}_3\Lambda^0(\mathcal{T}^2) = \left\langle \lambda_0^3, \lambda_1^3, \lambda_2^3, \lambda_1^2\lambda_2, \lambda_2^2\lambda_1, \lambda_2^2\lambda_0, \lambda_0^2\lambda_2, \lambda_0^2\lambda_1, \lambda_1^2\lambda_0, \lambda_0\lambda_1\lambda_2 \right\rangle.$$

Symmetry of Scalar Elements

$$\mathcal{P}_3\Lambda^0(\mathcal{T}^2) = \left\langle \lambda_0^3, \lambda_1^3, \lambda_2^3, \lambda_1^2\lambda_2, \lambda_2^2\lambda_1, \lambda_2^2\lambda_0, \lambda_0^2\lambda_2, \lambda_0^2\lambda_1, \lambda_1^2\lambda_0, \lambda_0\lambda_1\lambda_2 \right\rangle.$$

• When computing matrix of, e.g., $a(u, v) = \int_{T^2} \nabla u \cdot \nabla v$, can exploit sixfold symmetry of T^2 to compute fewer entries.

$$a\left(\lambda_0^3, \lambda_1^2 \lambda_2\right) = a\left(\lambda_0^3, \lambda_2^2 \lambda_1\right)$$
$$= a\left(\lambda_1^3, \lambda_2^2 \lambda_0\right) = a\left(\lambda_1^3, \lambda_0^2 \lambda_2\right)$$
$$= a\left(\lambda_2^3, \lambda_0^2 \lambda_1\right) = a\left(\lambda_2^3, \lambda_1^2 \lambda_0\right)$$

Symmetry of Vector Elements Whitney Elements

$$\langle \lambda_1 d\lambda_2 - \lambda_2 d\lambda_1, \lambda_2 d\lambda_0 - \lambda_0 d\lambda_2, \lambda_0 d\lambda_1 - \lambda_1 d\lambda_0 \rangle.$$

$$\langle \lambda_1 d\lambda_2 - \lambda_2 d\lambda_1, \\ \lambda_2 d\lambda_0 - \lambda_0 d\lambda_2, \\ \lambda_0 d\lambda_1 - \lambda_1 d\lambda_0, \\ \lambda_0 d\lambda_3 - \lambda_3 d\lambda_0, \\ \lambda_1 d\lambda_3 - \lambda_3 d\lambda_1, \\ \lambda_2 d\lambda_3 - \lambda_3 d\lambda_2 \rangle.$$

$$\langle \lambda_1 d\lambda_2 \wedge d\lambda_3 + \lambda_2 d\lambda_3 \wedge d\lambda_1 + \lambda_3 d\lambda_1 \wedge d\lambda_2, \\ \dots, \\ \lambda_0 d\lambda_1 \wedge d\lambda_2 + \lambda_1 d\lambda_2 \wedge d\lambda_0 \\ + \lambda_2 d\lambda_0 \wedge d\lambda_1 \rangle$$

Geometric symmetry \Rightarrow basis symmetry (up to sign).

Symmetry of Vector Elements

Lack of Symmetric Bases

$$\mathcal{P}_0 \Lambda^1(T^2)$$

$$= \langle d\lambda_0, d\lambda_1, d\lambda_2 \rangle,$$

$$d\lambda_0 + d\lambda_1 + d\lambda_2 = 0$$

Symmetry of Vector Elements

Lack of Symmetric Bases

$$\mathcal{P}_0 \Lambda^1(T^2)$$

$$= \langle d\lambda_0, d\lambda_1, d\lambda_2 \rangle,$$

$$d\lambda_0 + d\lambda_1 + d\lambda_2 = 0$$

Results

Theorem (if: Licht, 2019; only if: YBK, 2021)

The following spaces have symmetry-invariant bases up to sign if and only if the corresponding condition holds.

$$\mathcal{P}_r\Lambda^1(T^2)$$
 if and only if $r \notin 3\mathbb{N}_0$, $\mathcal{P}_r^-\Lambda^1(T^2)$ if and only if $r \notin 3\mathbb{N}_0 + 2$.

Theorem (YBK, 2021)

The following spaces have symmetry-invariant bases up to sign if and only if the corresponding condition holds.

$$\mathcal{P}_r \Lambda^1(T^3)$$
 always,
 $\mathcal{P}_r^- \Lambda^1(T^3)$ if and only if $r \notin 3\mathbb{N}_0 + 2$,
 $\mathcal{P}_r \Lambda^2(T^3)$ always,
 $\mathcal{P}_r^- \Lambda^2(T^3)$ always.

Methods Recursion

Methods Recursion

$$\begin{split} & \left< \lambda_0^3 \right> \oplus \left< \lambda_1^3 \right> \oplus \left< \lambda_2^3 \right> \\ & \oplus \left< \lambda_1^2 \lambda_2, \lambda_2^2 \lambda_1 \right> \oplus \left< \lambda_2^2 \lambda_0, \lambda_0^2 \lambda_2 \right> \oplus \left< \lambda_0^2 \lambda_1, \lambda_1^2 \lambda_0 \right> \oplus \left< \lambda_0 \lambda_1 \lambda_2 \right> \end{split}$$

Methods Recursion

$$\begin{split} \left\langle \lambda_0^3 \right\rangle \oplus \left\langle \lambda_1^3 \right\rangle \oplus \left\langle \lambda_2^3 \right\rangle \\ & \oplus \left\langle \lambda_1^2 \lambda_2, \lambda_2^2 \lambda_1 \right\rangle \oplus \left\langle \lambda_2^2 \lambda_0, \lambda_0^2 \lambda_2 \right\rangle \oplus \left\langle \lambda_0^2 \lambda_1, \lambda_1^2 \lambda_0 \right\rangle \oplus \left\langle \lambda_0 \lambda_1 \lambda_2 \right\rangle \\ & \cong \left\langle \lambda_0^2 \right\rangle \oplus \left\langle \lambda_1^2 \right\rangle \oplus \left\langle \lambda_2^2 \right\rangle \\ & \oplus \left\langle \lambda_1 \, ds, \lambda_2 \, ds \right\rangle \oplus \left\langle \lambda_0 \, ds, \lambda_2 \, ds \right\rangle \oplus \left\langle \lambda_0 \, ds, \lambda_1 \, ds \right\rangle \oplus \left\langle 1 \, dA \right\rangle \end{split}$$

(1 de) / (2 de) (√ (d de) / (2 de) (√ (d de) / (1 de) (d

Tetrahedron Basis

$$\mathcal{P}_0 \Lambda^1 (T^3)$$

$$= \langle d\lambda_0 + d\lambda_1 - d\lambda_2 - d\lambda_3, d\lambda_0 + d\lambda_2 - d\lambda_1 - d\lambda_3, d\lambda_1 + d\lambda_2 - d\lambda_0 - d\lambda_3 \rangle$$

$$=: \langle \alpha, \beta, \gamma \rangle.$$

$$\mathcal{P}_0 \Lambda^1(T^3)$$

$$= \langle d\lambda_0 + d\lambda_1 - d\lambda_2 - d\lambda_3, d\lambda_0 + d\lambda_2 - d\lambda_1 - d\lambda_3, d\lambda_1 + d\lambda_2 - d\lambda_0 - d\lambda_3 \rangle$$

$$=: \langle \alpha, \beta, \gamma \rangle.$$

$$\mathcal{P}_{2}\Lambda^{1}(T^{3})$$

$$= \mathcal{P}_{2}\Lambda^{0}(T^{3}) \otimes \mathcal{P}_{0}\Lambda^{1}(T^{3})$$

$$= \langle \lambda_{0}^{2}\alpha, \lambda_{0}^{2}\beta, \lambda_{0}^{2}\gamma, \lambda_{1}^{2}\alpha, \lambda_{1}^{2}\beta, \lambda_{1}^{2}\gamma, \lambda_{2}^{2}\alpha, \lambda_{2}^{2}\beta, \lambda_{2}^{2}\gamma, \lambda_{3}^{2}\alpha, \lambda_{3}^{2}\beta, \lambda_{3}^{2}\gamma, \lambda_{0}\lambda_{1}\alpha, \lambda_{0}\lambda_{1}\beta, \lambda_{0}\lambda_{1}\gamma, \lambda_{0}\lambda_{2}\alpha, \lambda_{0}\lambda_{2}\beta, \lambda_{0}\lambda_{2}\gamma, \lambda_{0}\lambda_{3}\alpha, \lambda_{0}\lambda_{3}\beta, \lambda_{0}\lambda_{3}\gamma, \lambda_{1}\lambda_{2}\alpha, \lambda_{1}\lambda_{2}\beta, \lambda_{1}\lambda_{2}\gamma, \lambda_{1}\lambda_{3}\alpha, \lambda_{1}\lambda_{3}\beta, \lambda_{1}\lambda_{3}\gamma, \lambda_{2}\lambda_{3}\alpha, \lambda_{2}\lambda_{3}\beta, \lambda_{2}\lambda_{3}\gamma\rangle.$$

Representations of $\mathbb{Z}/3$

- The 1D representation ${\bf 1}$ where $\mathbb{Z}/3$ acts trivially.
- The 2D representation **2** where $\mathbb{Z}/3$ acts by 120° rotations.
- The 3D representation **3** where $\mathbb{Z}/3$ acts by permuting the coordinates.
 - $\mathbf{3} \cong \mathbf{1} \oplus \mathbf{2}$ because $\langle (1,1,1) \rangle$ is an invariant subspace.

Representations of $\mathbb{Z}/3$

- The 1D representation 1 where $\mathbb{Z}/3$ acts trivially.
- The 2D representation **2** where $\mathbb{Z}/3$ acts by 120° rotations.
- The 3D representation **3** where $\mathbb{Z}/3$ acts by permuting the coordinates.
 - ${f 3}\cong {f 1}\oplus {f 2}$ because $\langle (1,1,1) \rangle$ is an invariant subspace.

Invariant bases

Representations of $\mathbb{Z}/3$

- The 1D representation ${\bf 1}$ where $\mathbb{Z}/3$ acts trivially.
- The 2D representation **2** where $\mathbb{Z}/3$ acts by 120° rotations.
- The 3D representation **3** where $\mathbb{Z}/3$ acts by permuting the coordinates.
 - ${f 3}\cong {f 1}\oplus {f 2}$ because $\langle (1,1,1) \rangle$ is an invariant subspace.

Invariant bases

Representations of $\mathbb{Z}/3$

- The 1D representation 1 where $\mathbb{Z}/3$ acts trivially.
- The 2D representation **2** where $\mathbb{Z}/3$ acts by 120° rotations.
- The 3D representation **3** where $\mathbb{Z}/3$ acts by permuting the coordinates.
 - $\mathbf{3} \cong \mathbf{1} \oplus \mathbf{2}$ because $\langle (1,1,1) \rangle$ is an invariant subspace.

Invariant bases

Representations of $\mathbb{Z}/3$

- The 1D representation ${\bf 1}$ where $\mathbb{Z}/3$ acts trivially.
- The 2D representation **2** where $\mathbb{Z}/3$ acts by 120° rotations.
- The 3D representation **3** where $\mathbb{Z}/3$ acts by permuting the coordinates.
 - ${f 3}\cong {f 1}\oplus {f 2}$ because $\langle (1,1,1) \rangle$ is an invariant subspace.

Invariant bases

Representations of $\mathbb{Z}/3$

- The 1D representation $\mathbf{1}$ where $\mathbb{Z}/3$ acts trivially.
- The 2D representation **2** where $\mathbb{Z}/3$ acts by 120° rotations.
- The 3D representation **3** where $\mathbb{Z}/3$ acts by permuting the coordinates.
 - ${f 3}\cong {f 1}\oplus {f 2}$ because $\langle (1,1,1) \rangle$ is an invariant subspace.

Invariant bases

1 and 3 have symmetry-invariant bases, but 2 does not.

Proposition

A representation $V \cong m\mathbf{1} \oplus n\mathbf{2}$ has a $\mathbb{Z}/3$ -invariant basis up to sign if and only if $m \geq n$.

Thank You and References

Martin Licht.

Symmetry and invariant bases in finite element exterior calculus.

https://arxiv.org/abs/1912.11002.

Yakov Berchenko-Kogan.

Symmetric bases for finite element exterior calculus spaces.

https://arxiv.org/abs/2112.06065.

D. N. Arnold and A. Logg.

Periodic Table of the Finite Elements.

SIAM News, 47(9), 2014.

Yakov Berchenko-Kogan.

Duality in finite element exterior calculus and Hodge duality on the sphere.

Found. Comput. Math., 21(5):1153-1180, 2021.

