Duality in Finite Element Exterior Calculus and the Hodge Star Operator on the Sphere

Yakov Berchenko-Kogan

Washington University in St. Louis

March 24, 2019

The finite element method

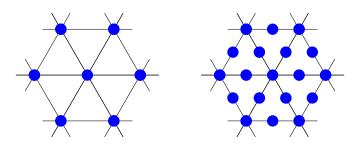
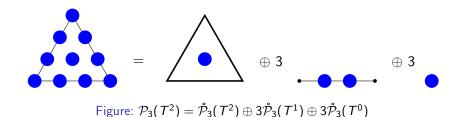


Figure: Degrees of freedom (blue) of piecewise linear functions (left) and piecewise quadratic functions (right).

Geometric decomposition



Geometric decomposition

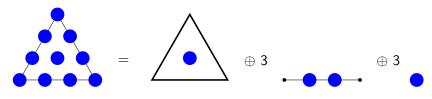


Figure:
$$\mathcal{P}_3(T^2) = \mathring{\mathcal{P}}_3(T^2) \oplus 3\mathring{\mathcal{P}}_3(T^1) \oplus 3\mathring{\mathcal{P}}_3(T^0)$$

$$(\mathcal{P}_3(T^2))^* \cong (\mathring{\mathcal{P}}_3(T^2))^* \oplus 3(\mathring{\mathcal{P}}_3(T^1))^* \oplus 3(\mathring{\mathcal{P}}_3(T^0))^*$$

Geometric decomposition

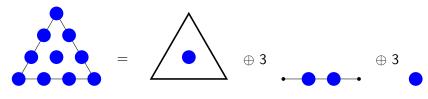


Figure:
$$\mathcal{P}_3(T^2) = \mathring{\mathcal{P}}_3(T^2) \oplus 3\mathring{\mathcal{P}}_3(T^1) \oplus 3\mathring{\mathcal{P}}_3(T^0)$$

$$(\mathcal{P}_3(T^2))^* \cong (\mathring{\mathcal{P}}_3(T^2))^* \oplus 3(\mathring{\mathcal{P}}_3(T^1))^* \oplus 3(\mathring{\mathcal{P}}_3(T^0))^*$$
$$\cong \mathcal{P}_0(T^2) \oplus 3\mathcal{P}_1(T^1) \oplus 3\mathcal{P}_2(T^0)$$

Definition

• Let $\mathcal P$ and $\mathcal Q$ be spaces of functions $T^n \to \mathbb R$.

Definition

- Let $\mathcal P$ and $\mathcal Q$ be spaces of functions $T^n \to \mathbb R$.
 - ullet e.g. $\mathcal{P}=\mathcal{P}_1(T^1)$, $\mathcal{Q}=\mathring{\mathcal{P}}_3(T^1)$

Definition

- Let $\mathcal P$ and $\mathcal Q$ be spaces of functions $T^n \to \mathbb R$.
 - ullet e.g. $\mathcal{P}=\mathcal{P}_1(T^1)$, $\mathcal{Q}=\mathring{\mathcal{P}}_3(T^1)$
- Consider the pairing

$$(p,q)\mapsto \int_{\mathcal{T}^n}pq.$$

Definition

• Let \mathcal{P} and \mathcal{Q} be spaces of functions $T^n \to \mathbb{R}$.

$$ullet$$
 e.g. $\mathcal{P}=\mathcal{P}_1(T^1)$, $\mathcal{Q}=\mathring{\mathcal{P}}_3(T^1)$

Consider the pairing

$$(p,q)\mapsto \int_{\mathcal{T}^n}pq.$$

• \mathcal{P} and \mathcal{Q} are dual to each other with respect to integration if this pairing is a perfect pairing $\mathcal{P} \times \mathcal{Q} \to \mathbb{R}$.

Definition

- Let \mathcal{P} and \mathcal{Q} be spaces of functions $T^n \to \mathbb{R}$.
 - ullet e.g. $\mathcal{P}=\mathcal{P}_1(T^1)$, $\mathcal{Q}=\mathring{\mathcal{P}}_3(T^1)$
- Consider the pairing

$$(p,q)\mapsto \int_{\mathcal{T}^n}pq.$$

- \mathcal{P} and \mathcal{Q} are dual to each other with respect to integration if this pairing is a perfect pairing $\mathcal{P} \times \mathcal{Q} \to \mathbb{R}$.
 - For each nonzero $p \in \mathcal{P}$ there exists a $q \in \mathcal{Q}$ such that $\int_{\mathcal{T}^n} pq > 0$, and for each nonzero q there exists such a p.

Definition

- Let \mathcal{P} and \mathcal{Q} be spaces of functions $T^n \to \mathbb{R}$.
 - ullet e.g. $\mathcal{P}=\mathcal{P}_1(T^1)$, $\mathcal{Q}=\mathring{\mathcal{P}}_3(T^1)$
- Consider the pairing

$$(p,q)\mapsto \int_{T^n}pq.$$

- \mathcal{P} and \mathcal{Q} are dual to each other with respect to integration if this pairing is a perfect pairing $\mathcal{P} \times \mathcal{Q} \to \mathbb{R}$.
 - For each nonzero $p \in \mathcal{P}$ there exists a $q \in \mathcal{Q}$ such that $\int_{\mathcal{T}^n} pq > 0$, and for each nonzero q there exists such a p.

Problem

Construct a bijection $\mathcal{P} o \mathcal{Q}$ so that for nonzero $p \mapsto q$ we have

- q only depends on p pointwise, and
- $\int_{T^n} pq > 0$.

Explicit pointwise duality

$$T^{1} = \{(x,y) \mid x+y=1\}$$

$$x$$

Figure: Barycentric coordinates

Explicit pointwise duality

$$T^{1} = \{(x, y) \mid x + y = 1\}$$

$$x$$

Figure: Barycentric coordinates

Example (Duality between $\mathcal{P}_1(T^1)$ and $\mathring{\mathcal{P}}_3(T^1)$)

For
$$p \in \mathcal{P}_1(\mathcal{T}^1)$$
, set $q = (xy)p$. Likewise, given q , set $p = \frac{q}{xy}$.

$$\begin{array}{c|cccc} \mathcal{P}_{1}(T^{1}) & \mathring{\mathcal{P}}_{3}(T^{1}) & \int_{T^{1}} pq \\ \hline x & x^{2}y & \int_{T^{1}} (xy)x^{2} \\ y & xy^{2} & \int_{T^{1}} (xy)y^{2} \end{array}$$

Spaces $\mathcal{P}_r \Lambda^k(T^n)$ and $\mathcal{P}_r^- \Lambda^k(T^n)$ of k-forms on T^n with polynomial coefficients of degree at most r.

Spaces $\mathcal{P}_r \Lambda^k(T^n)$ and $\mathcal{P}_r^- \Lambda^k(T^n)$ of k-forms on T^n with polynomial coefficients of degree at most r.

Special cases

Spaces $\mathcal{P}_r \Lambda^k(T^n)$ and $\mathcal{P}_r^- \Lambda^k(T^n)$ of k-forms on T^n with polynomial coefficients of degree at most r.

Special cases

- scalar fields
 - Lagrange
 - Discontinuous Galerkin

Spaces $\mathcal{P}_r \Lambda^k(T^n)$ and $\mathcal{P}_r^- \Lambda^k(T^n)$ of k-forms on T^n with polynomial coefficients of degree at most r.

Special cases

- scalar fields
 - Lagrange
 - Discontinuous Galerkin
- vector fields
 - Brezzi–Douglas–Marini elements
 - Raviart-Thomas elements
 - Nédélec elements

Spaces $\mathcal{P}_r \Lambda^k(T^n)$ and $\mathcal{P}_r^- \Lambda^k(T^n)$ of k-forms on T^n with polynomial coefficients of degree at most r.

Special cases

- scalar fields
 - Lagrange
 - Discontinuous Galerkin
- vector fields
 - Brezzi-Douglas-Marini elements
 - Raviart-Thomas elements
 - Nédélec elements

Example

 $\mathcal{P}_r\Lambda^1(T^3)$ and $\mathcal{P}_r^-\Lambda^1(T^3)$ are Nédélec $H(\mathrm{curl})$ elements of the 2nd and 1st kinds, respectively.

Spaces $\mathcal{P}_r \Lambda^k(T^n)$ and $\mathcal{P}_r^- \Lambda^k(T^n)$ of k-forms on T^n with polynomial coefficients of degree at most r.

Special cases

- scalar fields
 - Lagrange
 - Discontinuous Galerkin
- vector fields
 - Brezzi-Douglas-Marini elements
 - Raviart-Thomas elements
 - Nédélec elements

Example

 $\mathcal{P}_r\Lambda^1(T^3)$ and $\mathcal{P}_r^-\Lambda^1(T^3)$ are Nédélec $H(\mathrm{curl})$ elements of the 2nd and 1st kinds, respectively.

• See Arnold, Falk, Winther, 2006.

Theorem (Arnold, Falk, and Winther)

With respect to the integration pairing

$$(a,b)\mapsto \int_{\mathcal{T}^n}a\wedge b$$

Theorem (Arnold, Falk, and Winther)

With respect to the integration pairing

$$(a,b)\mapsto \int_{\mathcal{T}^n}a\wedge b$$

• $\mathcal{P}_r \Lambda^k(T^n)$ is dual to $\mathring{\mathcal{P}}_{r+k+1}^- \Lambda^{n-k}(T^n)$,

Theorem (Arnold, Falk, and Winther)

With respect to the integration pairing

$$(a,b)\mapsto \int_{\mathcal{T}^n}a\wedge b$$

- $\mathcal{P}_r \Lambda^k(T^n)$ is dual to $\mathring{\mathcal{P}}_{r+k+1}^- \Lambda^{n-k}(T^n)$,
- $\mathcal{P}_r^- \Lambda^k(T^n)$ is dual to $\mathring{\mathcal{P}}_{r+k} \Lambda^{n-k}(T^n)$.

Theorem (Arnold, Falk, and Winther)

With respect to the integration pairing

$$(a,b)\mapsto \int_{\mathcal{T}^n}a\wedge b$$

- $\mathcal{P}_r \Lambda^k(T^n)$ is dual to $\mathring{\mathcal{P}}_{r+k+1}^- \Lambda^{n-k}(T^n)$,
- $\mathcal{P}_r^- \Lambda^k(T^n)$ is dual to $\mathring{\mathcal{P}}_{r+k} \Lambda^{n-k}(T^n)$.

Problem

Construct an explicit bijection between these spaces so that for nonzero $a \mapsto b$ we have

- b only depends on a pointwise, and
- $\int_{T^n} a \wedge b > 0$.

Let Ω be an 3-dimensional domain.

• $\Lambda^1(\Omega)$ and $\Lambda^2(\Omega)$ are dual to each other with respect to integration.

Let Ω be an 3-dimensional domain.

• $\Lambda^1(\Omega)$ and $\Lambda^2(\Omega)$ are dual to each other with respect to integration.

Explicit pointwise duality

Let Ω be an 3-dimensional domain.

• $\Lambda^1(\Omega)$ and $\Lambda^2(\Omega)$ are dual to each other with respect to integration.

Explicit pointwise duality

• Given nonzero $a \in \Lambda^1(\Omega)$, let

$$a = a_x dx + a_y dy + a_z dz.$$

Let Ω be an 3-dimensional domain.

• $\Lambda^1(\Omega)$ and $\Lambda^2(\Omega)$ are dual to each other with respect to integration.

Explicit pointwise duality

• Given nonzero $a \in \Lambda^1(\Omega)$, let

$$a = a_x dx + a_y dy + a_z dz.$$

• Define $b \in \Lambda^2(\Omega)$ by

$$b = a_x dy \wedge dz + a_y dz \wedge dx + a_z dx \wedge dy =: *a.$$

Let Ω be an 3-dimensional domain.

• $\Lambda^1(\Omega)$ and $\Lambda^2(\Omega)$ are dual to each other with respect to integration.

Explicit pointwise duality

• Given nonzero $a \in \Lambda^1(\Omega)$, let

$$a = a_x dx + a_y dy + a_z dz.$$

• Define $b \in \Lambda^2(\Omega)$ by

$$b = a_x dy \wedge dz + a_y dz \wedge dx + a_z dx \wedge dy =: *a.$$

• b only depends on a pointwise.

Let Ω be an 3-dimensional domain.

• $\Lambda^1(\Omega)$ and $\Lambda^2(\Omega)$ are dual to each other with respect to integration.

Explicit pointwise duality

• Given nonzero $a \in \Lambda^1(\Omega)$, let

$$a = a_x dx + a_y dy + a_z dz.$$

• Define $b \in \Lambda^2(\Omega)$ by

$$b = a_x dy \wedge dz + a_y dz \wedge dx + a_z dx \wedge dy =: *a.$$

- b only depends on a pointwise.
- $\int_{\Omega} a \wedge b = \int_{\Omega} (a_x^2 + a_y^2 + a_z^2) d \operatorname{vol} = \int_{\Omega} \|a\|^2 d \operatorname{vol} > 0,$

The simplex and the sphere

- T^2 consists of points in the first orthant with x + y + z = 1.
- Via the change of coordinates

$$x = u^2, y = v^2, z = w^2,$$

we obtain the unit sphere $u^2 + v^2 + w^2 = 1$.

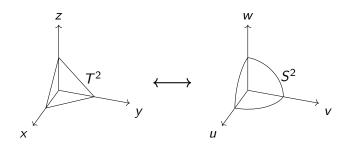


Figure: Change of coordinates

Constructing the dual

• Start with $a \in \Lambda^k(T^n)$.

Constructing the dual

- Start with $a \in \Lambda^k(T^n)$.
- ② Change coordinates to obtain $\alpha \in \Lambda^k(S^n)$.

Constructing the dual

- Start with $a \in \Lambda^k(T^n)$.
- ② Change coordinates to obtain $\alpha \in \Lambda^k(S^n)$.
- **3** Apply the Hodge star to obtain $*_{S^n}\alpha \in \Lambda^{n-k}(S^n)$.

Constructing the dual

- Start with $a \in \Lambda^k(T^n)$.
- ② Change coordinates to obtain $\alpha \in \Lambda^k(S^n)$.
- **3** Apply the Hodge star to obtain $*_{S^n}\alpha \in \Lambda^{n-k}(S^n)$.
- Multiply by the coordinate functions to obtain $\beta \in \Lambda^{n-k}(S^n)$.

Constructing the dual

- Start with $a \in \Lambda^k(T^n)$.
- ② Change coordinates to obtain $\alpha \in \Lambda^k(S^n)$.
- **3** Apply the Hodge star to obtain $*_{S^n}\alpha \in \Lambda^{n-k}(S^n)$.
- Multiply by the coordinate functions to obtain $\beta \in \Lambda^{n-k}(S^n)$.
 - in dimension 2, $\beta = uvw(*_{S^2}\alpha)$.

Constructing the dual

- Start with $a \in \Lambda^k(T^n)$.
- ② Change coordinates to obtain $\alpha \in \Lambda^k(S^n)$.
- **3** Apply the Hodge star to obtain $*_{S^n}\alpha \in \Lambda^{n-k}(S^n)$.
- Multiply by the coordinate functions to obtain β ∈ Λ^{n-k}(Sⁿ).
 in dimension 2, β = uvw(*_{S²}α).
- **5** Change coordinates back to obtain $b \in \Lambda^{n-k}(T^n)$.

Constructing the dual

- Start with $a \in \Lambda^k(T^n)$.
- ② Change coordinates to obtain $\alpha \in \Lambda^k(S^n)$.
- **3** Apply the Hodge star to obtain $*_{S^n}\alpha \in \Lambda^{n-k}(S^n)$.
- Multiply by the coordinate functions to obtain $\beta \in \Lambda^{n-k}(S^n)$. • in dimension 2, $\beta = uvw(*_{S^2}\alpha)$.
- **5** Change coordinates back to obtain $b \in \Lambda^{n-k}(T^n)$.

Constructing the dual

- **1** Start with $a \in \Lambda^k(T^n)$.
- ② Change coordinates to obtain $\alpha \in \Lambda^k(S^n)$.
- **3** Apply the Hodge star to obtain $*_{S^n}\alpha \in \Lambda^{n-k}(S^n)$.
- Multiply by the coordinate functions to obtain β ∈ Λ^{n-k}(Sⁿ).
 in dimension 2, β = uvw(*_{S²}α).
- **5** Change coordinates back to obtain $b \in \Lambda^{n-k}(T^n)$.

Theorem (YBK)

• b depends on a pointwise.

Constructing the dual

- Start with $a \in \Lambda^k(T^n)$.
- ② Change coordinates to obtain $\alpha \in \Lambda^k(S^n)$.
- **3** Apply the Hodge star to obtain $*_{S^n}\alpha \in \Lambda^{n-k}(S^n)$.
- Multiply by the coordinate functions to obtain $\beta \in \Lambda^{n-k}(S^n)$. • in dimension 2, $\beta = uvw(*_{S^2}\alpha)$.
- **5** Change coordinates back to obtain $b \in \Lambda^{n-k}(T^n)$.

- b depends on a pointwise.
- $\int_{T^n} a \wedge b > 0$ for nonzero a.

Constructing the dual

- Start with $a \in \Lambda^k(T^n)$.
- ② Change coordinates to obtain $\alpha \in \Lambda^k(S^n)$.
- **3** Apply the Hodge star to obtain $*_{S^n}\alpha \in \Lambda^{n-k}(S^n)$.
- Multiply by the coordinate functions to obtain $\beta \in \Lambda^{n-k}(S^n)$. • in dimension 2, $\beta = uvw(*_{S^2}\alpha)$.
- **5** Change coordinates back to obtain $b \in \Lambda^{n-k}(T^n)$.

- b depends on a pointwise.
- $\int_{T^n} a \wedge b > 0$ for nonzero a.
- $a \in \mathcal{P}_r \Lambda^k(T^n)$ iff $b \in \mathring{\mathcal{P}}_{r+k+1}^- \Lambda^{n-k}(T^n)$.

Constructing the dual

- Start with $a \in \Lambda^k(T^n)$.
- ② Change coordinates to obtain $\alpha \in \Lambda^k(S^n)$.
- **3** Apply the Hodge star to obtain $*_{S^n}\alpha \in \Lambda^{n-k}(S^n)$.
- Multiply by the coordinate functions to obtain β ∈ Λ^{n-k}(Sⁿ).
 in dimension 2, β = uvw(*_{S²}α).
- **5** Change coordinates back to obtain $b \in \Lambda^{n-k}(T^n)$.

- b depends on a pointwise.
- $\int_{T^n} a \wedge b > 0$ for nonzero a.
- $a \in \mathcal{P}_r \Lambda^k(T^n)$ iff $b \in \mathring{\mathcal{P}}_{r+k+1}^- \Lambda^{n-k}(T^n)$.
- $a \in \mathcal{P}_r^- \Lambda^k(T^n)$ iff $b \in \mathring{\mathcal{P}}_{r+k} \Lambda^{n-k}(T^n)$.

Change of coordinates

$$x=u^2$$
,

$$y=v^2$$

$$z=w^2$$

$$dx = 2u du$$
,

$$dy = 2v dv$$
,

$$dz = 2w dw$$
.

Change of coordinates

$$x = u^2,$$
 $y = v^2,$ $z = w^2,$ $dx = 2u du,$ $dy = 2v dv,$ $dz = 2w dw.$

Hodge star on the sphere

$$\nu = u \, du + v \, dv + w \, dw,$$

$$*_{S^2}\alpha = *_{\mathbb{R}^3}(\nu \wedge \alpha).$$

Change of coordinates

$$x = u^2,$$
 $y = v^2,$ $z = w^2,$ $dx = 2u du,$ $dy = 2v dv,$ $dz = 2w dw.$

Hodge star on the sphere

$$\nu = u \, du + v \, dv + w \, dw,$$

$$*_{S^2}\alpha = *_{\mathbb{R}^3}(\nu \wedge \alpha).$$

Change of coordinates

$$x = u^2,$$
 $y = v^2,$ $z = w^2,$ $dx = 2u du,$ $dy = 2v dv,$ $dz = 2w dw.$

Hodge star on the sphere

$$\nu = u \, du + v \, dv + w \, dw,$$

$$*_{S^2}\alpha = *_{\mathbb{R}^3}(\nu \wedge \alpha).$$

$$\bullet \quad a = y \ dy \in \mathcal{P}_1 \Lambda^1(T^2).$$

Change of coordinates

$$x = u^2,$$
 $y = v^2,$ $z = w^2,$ $dx = 2u du,$ $dy = 2v dv,$ $dz = 2w dw.$

Hodge star on the sphere

$$\nu = u \, du + v \, dv + w \, dw,$$

$$*_{S^2}\alpha = *_{\mathbb{R}^3}(\nu \wedge \alpha).$$

- $a = y \ dy \in \mathcal{P}_1 \Lambda^1(T^2).$
- **2** $\alpha = 2v^3 \, dv$.

Change of coordinates

$$x = u^2,$$
 $y = v^2,$ $z = w^2,$ $dx = 2u du,$ $dy = 2v dv,$ $dz = 2w dw.$

Hodge star on the sphere

$$\nu = u \, du + v \, dv + w \, dw,$$

$$*_{S^2} \alpha = *_{\mathbb{R}^3} (\nu \wedge \alpha).$$

- $a = y \ dy \in \mathcal{P}_1 \Lambda^1(T^2).$
- **2** $\alpha = 2v^3 \, dv$.

Change of coordinates

$$x = u^2,$$
 $y = v^2,$ $z = w^2,$ $dx = 2u du,$ $dy = 2v dv,$ $dz = 2w dw.$

Hodge star on the sphere

$$\nu = u \, du + v \, dv + w \, dw,$$

$$*_{S^2}\alpha = *_{\mathbb{R}^3}(\nu \wedge \alpha).$$

- $a = y \ dy \in \mathcal{P}_1 \Lambda^1(T^2).$
- **2** $\alpha = 2v^3 \, dv$.
- $\beta = uvw(*_{S^n}\alpha) = 2u^2v^4w \ dw 2uv^4w^2 \ du.$

Change of coordinates

$$x = u^2,$$
 $y = v^2,$ $z = w^2,$ $dx = 2u du,$ $dy = 2v dv,$ $dz = 2w dw.$

Hodge star on the sphere

$$\nu = u \, du + v \, dv + w \, dw,$$

$$*_{S^2} \alpha = *_{\mathbb{R}^3} (\nu \wedge \alpha).$$

- $\bullet \quad a = y \ dy \in \mathcal{P}_1 \Lambda^1(T^2).$

- **5** $b = xy^2 dz y^2 z dx \in \mathring{\mathcal{P}}_3^- \Lambda^1(T^2).$

$$a = x \, dy - y \, dx \in \mathcal{P}_1^- \Lambda^1(T^2).$$

$$\bullet \quad a = x \, dy - y \, dx \in \mathcal{P}_1^- \Lambda^1(T^2).$$

$$*_{S^2}\alpha = 2((u^3v + uv^3)dw - u^2vw du - uv^2w dv)$$

$$= 2uv(u^2 + v^2 + w^2) dw - uvw d(u^2 + v^2 + w^2)$$

$$= 2uv dw.$$

- $*_{S^2}\alpha = 2((u^3v + uv^3)dw u^2vw du uv^2w dv)$ $= 2uv(u^2 + v^2 + w^2) dw uvw d(u^2 + v^2 + w^2)$ = 2uv dw.

- $*_{S^2}\alpha = 2((u^3v + uv^3)dw u^2vw du uv^2w dv)$ $= 2uv(u^2 + v^2 + w^2) dw uvw d(u^2 + v^2 + w^2)$ = 2uv dw.
- $b = xy \ dz \in \mathring{\mathcal{P}}_2 \Lambda^1(T^2).$

Example

- $a = x \, dy y \, dx \in \mathcal{P}_1^- \Lambda^1(T^2).$
- $*_{S^2}\alpha = 2((u^3v + uv^3)dw u^2vw du uv^2w dv)$ $= 2uv(u^2 + v^2 + w^2) dw uvw d(u^2 + v^2 + w^2)$ = 2uv dw.
- $\beta = uvw(*_{S^2}\alpha) = 2u^2v^2w dw.$
- $b = xy \ dz \in \mathring{\mathcal{P}}_2 \Lambda^1(T^2).$

Integration via u-substitution

$$\begin{split} \int_{T^2} a \wedge b &= \int_{S_{>0}^2} \alpha \wedge \beta = \int_{S_{>0}^2} uvw(\alpha \wedge *_{S^2}\alpha) \\ &= \int_{S_{>0}^2} uvw \left\|\alpha\right\|^2 d \operatorname{Area} > 0 \end{split}$$

Change of coordinates

$$x = u^2,$$
 $y = v^2,$ $z = w^2,$ $dx = 2u du,$ $dy = 2v dv,$ $dz = 2w dw.$

Change of coordinates

$$x = u^2$$
, $y = v^2$, $z = w^2$,
 $dx = 2u du$, $dy = 2v dv$, $dz = 2w dw$.

Definition

 $\alpha \in \Lambda^k(S^n)$ is even if it is invariant under each coordinate reflection. Let $\Lambda_e^k(S^n)$ denote the space of such forms.

Change of coordinates

$$x = u^2$$
, $y = v^2$, $z = w^2$,
 $dx = 2u du$, $dy = 2v dv$, $dz = 2w dw$.

Definition

 $\alpha \in \Lambda^k(S^n)$ is even if it is invariant under each coordinate reflection. Let $\Lambda_e^k(S^n)$ denote the space of such forms.

Example

$$u^2 + v^4 w^2$$

u du

 $uvw^2 du \wedge dv$

Change of coordinates

$$x = u^2,$$
 $y = v^2,$ $z = w^2,$ $dx = 2u du,$ $dy = 2v dv,$ $dz = 2w dw.$

Definition

 $\alpha \in \Lambda^k(S^n)$ is even if it is invariant under each coordinate reflection. Let $\Lambda_e^k(S^n)$ denote the space of such forms.

Example

$$u^2 + v^4 w^2$$

u du

 $uvw^2 du \wedge dv$

Theorem (YBK)

The change of coordinates induces a bijection between $\mathcal{P}_r \Lambda^k(T^n)$ and $\mathcal{P}_{2r+k} \Lambda^k_e(S^n)$.

Definition

 $\alpha \in \Lambda^k(S^n)$ is odd if it changes sign under each coordinate reflection. Let $\Lambda^k_o(S^n)$ denote the space of such forms.

Definition

 $\alpha \in \Lambda^k(S^n)$ is odd if it changes sign under each coordinate reflection. Let $\Lambda^k_o(S^n)$ denote the space of such forms.

Definition

Let u_N denote the product of the coordinate functions.

Definition

 $\alpha \in \Lambda^k(S^n)$ is odd if it changes sign under each coordinate reflection. Let $\Lambda^k_o(S^n)$ denote the space of such forms.

Definition

Let u_N denote the product of the coordinate functions.

• In dimension 2, $u_N = uvw$.

Definition

 $\alpha \in \Lambda^k(S^n)$ is odd if it changes sign under each coordinate reflection. Let $\Lambda^k_o(S^n)$ denote the space of such forms.

Definition

Let u_N denote the product of the coordinate functions.

• In dimension 2, $u_N = uvw$.

Proposition

Definition

 $\alpha \in \Lambda^k(S^n)$ is odd if it changes sign under each coordinate reflection. Let $\Lambda^k_o(S^n)$ denote the space of such forms.

Definition

Let u_N denote the product of the coordinate functions.

• In dimension 2, $u_N = uvw$.

Proposition

• If α is even, then $*_{S^n}\alpha$ is odd, and vice versa.

Definition

 $\alpha \in \Lambda^k(S^n)$ is odd if it changes sign under each coordinate reflection. Let $\Lambda^k_o(S^n)$ denote the space of such forms.

Definition

Let u_N denote the product of the coordinate functions.

• In dimension 2, $u_N = uvw$.

Proposition

- If α is even, then $*_{S^n}\alpha$ is odd, and vice versa.
- If α is even, then $u_N\alpha$ is odd, and vice versa.

Definition

 $\alpha \in \Lambda^k(S^n)$ is odd if it changes sign under each coordinate reflection. Let $\Lambda^k_o(S^n)$ denote the space of such forms.

Definition

Let u_N denote the product of the coordinate functions.

• In dimension 2, $u_N = uvw$.

Proposition

- If α is even, then $*_{S^n}\alpha$ is odd, and vice versa.
- If α is even, then $u_N\alpha$ is odd, and vice versa.

Proof.

Definition

 $\alpha \in \Lambda^k(S^n)$ is odd if it changes sign under each coordinate reflection. Let $\Lambda^k_o(S^n)$ denote the space of such forms.

Definition

Let u_N denote the product of the coordinate functions.

• In dimension 2, $u_N = uvw$.

Proposition

- If α is even, then $*_{S^n}\alpha$ is odd, and vice versa.
- If α is even, then $u_N\alpha$ is odd, and vice versa.

Proof.

• Reflections reverse orientation, which changes the sign of $*_{S^n}$.

Definition

 $\alpha \in \Lambda^k(S^n)$ is odd if it changes sign under each coordinate reflection. Let $\Lambda^k_o(S^n)$ denote the space of such forms.

Definition

Let u_N denote the product of the coordinate functions.

• In dimension 2, $u_N = uvw$.

Proposition

- If α is even, then $*_{S^n}\alpha$ is odd, and vice versa.
- If α is even, then $u_N\alpha$ is odd, and vice versa.

Proof.

- Reflections reverse orientation, which changes the sign of $*_{S^n}$.
- u_N is odd.

Theorem (YBK)

Theorem (YBK)

$$a \in \mathcal{P}_r^- \Lambda^k(T^n) \qquad \Leftrightarrow \qquad \alpha \in *_{S^n} \mathcal{P}_{2r+k-1} \Lambda_o^{n-k}(S^n)$$

Theorem (YBK)

$$a \in \mathcal{P}_r^- \Lambda^k(T^n) \qquad \Leftrightarrow \qquad \alpha \in *_{S^n} \mathcal{P}_{2r+k-1} \Lambda_o^{n-k}(S^n)$$

$$a \in \mathring{\mathcal{P}}_r \Lambda^k(T^n) \qquad \Leftrightarrow \qquad \alpha \in u_N \mathcal{P}_{2r+k-n-1} \Lambda^k_o(S^n)$$

Theorem (YBK)

$$a \in \mathcal{P}_r^- \Lambda^k(T^n) \qquad \Leftrightarrow \qquad \alpha \in *_{S^n} \mathcal{P}_{2r+k-1} \Lambda_o^{n-k}(S^n)$$

$$a \in \mathring{\mathcal{P}}_r \Lambda^k(T^n) \qquad \Leftrightarrow \qquad \alpha \in u_N \mathcal{P}_{2r+k-n-1} \Lambda_o^k(S^n)$$

$$a \in \mathring{\mathcal{P}}_r^- \Lambda^k(T^n) \qquad \Leftrightarrow \qquad \alpha \in u_N *_{S^n} \mathcal{P}_{2r+k-n-2} \Lambda_o^{n-k}(S^n).$$

Theorem (YBK)

Let $a \in \mathcal{P}_r \Lambda^k(T^n)$ and $\alpha \in \mathcal{P}_{2r+k} \Lambda^k_e(S^n)$ correspond to each other via the change of coordinates. Then for $r \geq 1$,

$$\begin{aligned} & a \in \mathcal{P}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in *_{S^n} \mathcal{P}_{2r+k-1} \Lambda_o^{n-k}(S^n) \\ & a \in \mathring{\mathcal{P}}_r \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N \mathcal{P}_{2r+k-n-1} \Lambda_o^k(S^n) \\ & a \in \mathring{\mathcal{P}}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N *_{S^n} \mathcal{P}_{2r+k-n-2} \Lambda_e^{n-k}(S^n). \end{aligned}$$

Theorem (YBK)

Let $a \in \mathcal{P}_r \Lambda^k(T^n)$ and $\alpha \in \mathcal{P}_{2r+k} \Lambda^k_e(S^n)$ correspond to each other via the change of coordinates. Then for $r \geq 1$,

$$\begin{aligned} & a \in \mathcal{P}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in *_{S^n} \mathcal{P}_{2r+k-1} \Lambda_o^{n-k}(S^n) \\ & a \in \mathring{\mathcal{P}}_r \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N \mathcal{P}_{2r+k-n-1} \Lambda_o^k(S^n) \\ & a \in \mathring{\mathcal{P}}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N *_{S^n} \mathcal{P}_{2r+k-n-2} \Lambda_e^{n-k}(S^n). \end{aligned}$$

Explicit pointwise duality for $\mathcal{P}_r\Lambda^k(T^n)$ and $\mathring{\mathcal{P}}_{r+k+1}^-\Lambda^{n-k}(T^n)$

Theorem (YBK)

Let $a \in \mathcal{P}_r \Lambda^k(T^n)$ and $\alpha \in \mathcal{P}_{2r+k} \Lambda^k_e(S^n)$ correspond to each other via the change of coordinates. Then for $r \geq 1$,

$$\begin{aligned} & a \in \mathcal{P}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in *_{S^n} \mathcal{P}_{2r+k-1} \Lambda_o^{n-k}(S^n) \\ & a \in \mathring{\mathcal{P}}_r \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N \mathcal{P}_{2r+k-n-1} \Lambda_o^k(S^n) \\ & a \in \mathring{\mathcal{P}}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N *_{S^n} \mathcal{P}_{2r+k-n-2} \Lambda_e^{n-k}(S^n). \end{aligned}$$

Theorem (YBK)

Let $a \in \mathcal{P}_r \Lambda^k(T^n)$ and $\alpha \in \mathcal{P}_{2r+k} \Lambda^k_e(S^n)$ correspond to each other via the change of coordinates. Then for $r \geq 1$,

$$\begin{aligned} & a \in \mathcal{P}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in *_{S^n} \mathcal{P}_{2r+k-1} \Lambda_o^{n-k}(S^n) \\ & a \in \mathring{\mathcal{P}}_r \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N \mathcal{P}_{2r+k-n-1} \Lambda_o^k(S^n) \\ & a \in \mathring{\mathcal{P}}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N *_{S^n} \mathcal{P}_{2r+k-n-2} \Lambda_e^{n-k}(S^n). \end{aligned}$$

Theorem (YBK)

Let $a \in \mathcal{P}_r \Lambda^k(T^n)$ and $\alpha \in \mathcal{P}_{2r+k} \Lambda^k_e(S^n)$ correspond to each other via the change of coordinates. Then for $r \geq 1$,

$$\begin{aligned} & a \in \mathcal{P}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in *_{S^n} \mathcal{P}_{2r+k-1} \Lambda_o^{n-k}(S^n) \\ & a \in \mathring{\mathcal{P}}_r \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N \mathcal{P}_{2r+k-n-1} \Lambda_o^k(S^n) \\ & a \in \mathring{\mathcal{P}}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N *_{S^n} \mathcal{P}_{2r+k-n-2} \Lambda_e^{n-k}(S^n). \end{aligned}$$

Theorem (YBK)

Let $a \in \mathcal{P}_r \Lambda^k(T^n)$ and $\alpha \in \mathcal{P}_{2r+k} \Lambda^k_e(S^n)$ correspond to each other via the change of coordinates. Then for $r \geq 1$,

$$\begin{aligned} & a \in \mathcal{P}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in *_{S^n} \mathcal{P}_{2r+k-1} \Lambda_o^{n-k}(S^n) \\ & a \in \mathring{\mathcal{P}}_r \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N \mathcal{P}_{2r+k-n-1} \Lambda_o^k(S^n) \\ & a \in \mathring{\mathcal{P}}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N *_{S^n} \mathcal{P}_{2r+k-n-2} \Lambda_e^{n-k}(S^n). \end{aligned}$$

- $a \in \mathcal{P}_r \Lambda^k(T^n),$

- $\bullet b \in \mathring{\mathcal{P}}_{r+k+1}^- \Lambda^{n-k}(T^n).$

Theorem (YBK)

$$a \in \mathcal{P}_r^- \Lambda^k(T^n) \qquad \Leftrightarrow \qquad \alpha \in *_{S^n} \mathcal{P}_{2r+k-1} \Lambda_o^{n-k}(S^n)$$

$$a \in \mathring{\mathcal{P}}_r \Lambda^k(T^n) \qquad \Leftrightarrow \qquad \alpha \in u_N \mathcal{P}_{2r+k-n-1} \Lambda_o^k(S^n)$$

$$a \in \mathring{\mathcal{P}}_r^- \Lambda^k(T^n) \qquad \Leftrightarrow \qquad \alpha \in u_N *_{S^n} \mathcal{P}_{2r+k-n-2} \Lambda_o^{n-k}(S^n).$$

Theorem (YBK)

Let $a \in \mathcal{P}_r \Lambda^k(T^n)$ and $\alpha \in \mathcal{P}_{2r+k} \Lambda^k_e(S^n)$ correspond to each other via the change of coordinates. Then for $r \geq 1$,

$$\begin{aligned} & a \in \mathcal{P}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in *_{S^n} \mathcal{P}_{2r+k-1} \Lambda_o^{n-k}(S^n) \\ & a \in \mathring{\mathcal{P}}_r \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N \mathcal{P}_{2r+k-n-1} \Lambda_o^k(S^n) \\ & a \in \mathring{\mathcal{P}}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N *_{S^n} \mathcal{P}_{2r+k-n-2} \Lambda_e^{n-k}(S^n). \end{aligned}$$

Theorem (YBK)

Let $a \in \mathcal{P}_r \Lambda^k(T^n)$ and $\alpha \in \mathcal{P}_{2r+k} \Lambda^k_e(S^n)$ correspond to each other via the change of coordinates. Then for $r \geq 1$,

$$\begin{aligned} & a \in \mathcal{P}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in *_{S^n} \mathcal{P}_{2r+k-1} \Lambda_o^{n-k}(S^n) \\ & a \in \mathring{\mathcal{P}}_r \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N \mathcal{P}_{2r+k-n-1} \Lambda_o^k(S^n) \\ & a \in \mathring{\mathcal{P}}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N *_{S^n} \mathcal{P}_{2r+k-n-2} \Lambda_e^{n-k}(S^n). \end{aligned}$$

$$\bullet \quad a \in \mathcal{P}_r^- \Lambda^k(T^n),$$

Theorem (YBK)

Let $a \in \mathcal{P}_r \Lambda^k(T^n)$ and $\alpha \in \mathcal{P}_{2r+k} \Lambda^k_e(S^n)$ correspond to each other via the change of coordinates. Then for $r \geq 1$,

$$\begin{aligned} & a \in \mathcal{P}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in *_{S^n} \mathcal{P}_{2r+k-1} \Lambda_o^{n-k}(S^n) \\ & a \in \mathring{\mathcal{P}}_r \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N \mathcal{P}_{2r+k-n-1} \Lambda_o^k(S^n) \\ & a \in \mathring{\mathcal{P}}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N *_{S^n} \mathcal{P}_{2r+k-n-2} \Lambda_e^{n-k}(S^n). \end{aligned}$$

Theorem (YBK)

Let $a \in \mathcal{P}_r \Lambda^k(T^n)$ and $\alpha \in \mathcal{P}_{2r+k} \Lambda^k_e(S^n)$ correspond to each other via the change of coordinates. Then for $r \geq 1$,

$$\begin{aligned} & a \in \mathcal{P}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in *_{S^n} \mathcal{P}_{2r+k-1} \Lambda_o^{n-k}(S^n) \\ & a \in \mathring{\mathcal{P}}_r \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N \mathcal{P}_{2r+k-n-1} \Lambda_o^k(S^n) \\ & a \in \mathring{\mathcal{P}}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N *_{S^n} \mathcal{P}_{2r+k-n-2} \Lambda_e^{n-k}(S^n). \end{aligned}$$

- $*_{S^n}\alpha \in \mathcal{P}_{2r+k-1}\Lambda_o^{n-k}(S^n),$

Theorem (YBK)

Let $a \in \mathcal{P}_r \Lambda^k(T^n)$ and $\alpha \in \mathcal{P}_{2r+k} \Lambda^k_e(S^n)$ correspond to each other via the change of coordinates. Then for $r \geq 1$,

$$\begin{aligned} & a \in \mathcal{P}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in *_{S^n} \mathcal{P}_{2r+k-1} \Lambda_o^{n-k}(S^n) \\ & a \in \mathring{\mathcal{P}}_r \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N \mathcal{P}_{2r+k-n-1} \Lambda_o^k(S^n) \\ & a \in \mathring{\mathcal{P}}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N *_{S^n} \mathcal{P}_{2r+k-n-2} \Lambda_e^{n-k}(S^n). \end{aligned}$$

Theorem (YBK)

Let $a \in \mathcal{P}_r \Lambda^k(T^n)$ and $\alpha \in \mathcal{P}_{2r+k} \Lambda^k_e(S^n)$ correspond to each other via the change of coordinates. Then for $r \geq 1$,

$$\begin{aligned} & a \in \mathcal{P}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in *_{S^n} \mathcal{P}_{2r+k-1} \Lambda_o^{n-k}(S^n) \\ & a \in \mathring{\mathcal{P}}_r \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N \mathcal{P}_{2r+k-n-1} \Lambda_o^k(S^n) \\ & a \in \mathring{\mathcal{P}}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N *_{S^n} \mathcal{P}_{2r+k-n-2} \Lambda_e^{n-k}(S^n). \end{aligned}$$

- $b \in \mathring{\mathcal{P}}_{r+k} \Lambda^{n-k}(T^n).$

Definition

• Let X be the radial vector field

$$X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}.$$

Definition

• Let X be the radial vector field

$$X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}.$$

Definition

Let X be the radial vector field

$$X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}.$$

• Let X_T be the projection of the radial vector field to T^n .

$$X_T = \left(x - \frac{1}{3}\right) \frac{\partial}{\partial x} + \left(y - \frac{1}{3}\right) \frac{\partial}{\partial y} + \left(z - \frac{1}{3}\right) \frac{\partial}{\partial z}.$$

Definition

Let X be the radial vector field

$$X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}.$$

• Let X_T be the projection of the radial vector field to T^n .

$$X_T = \left(x - \frac{1}{3}\right) \frac{\partial}{\partial x} + \left(y - \frac{1}{3}\right) \frac{\partial}{\partial y} + \left(z - \frac{1}{3}\right) \frac{\partial}{\partial z}.$$

Definition

Let X be the radial vector field

$$X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}.$$

• Let X_T be the projection of the radial vector field to T^n .

$$X_T = \left(x - \frac{1}{3}\right) \frac{\partial}{\partial x} + \left(y - \frac{1}{3}\right) \frac{\partial}{\partial y} + \left(z - \frac{1}{3}\right) \frac{\partial}{\partial z}.$$

• Let $i_X : \Lambda^k(T^2) \to \Lambda^{k-1}(T^2)$ denote contraction.

Definition

Let X be the radial vector field

$$X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}.$$

• Let X_T be the projection of the radial vector field to T^n .

$$X_T = \left(x - \frac{1}{3}\right) \frac{\partial}{\partial x} + \left(y - \frac{1}{3}\right) \frac{\partial}{\partial y} + \left(z - \frac{1}{3}\right) \frac{\partial}{\partial z}.$$

• Let $i_X: \Lambda^k(T^2) \to \Lambda^{k-1}(T^2)$ denote contraction.

Definition (Arnold, Falk, and Winther)

$$\mathcal{P}_r^- \Lambda^k(T^n) := \mathcal{P}_{r-1} \Lambda^k(T^n) + i_{X_T} \mathcal{P}_{r-1} \Lambda^{k+1}(T^n).$$

 $\mathcal{P}_r \Lambda^k(T^n)$ is the restriction of $\mathcal{P}_r \Lambda^k(\mathbb{R}^{n+1})$ to T^n . Likewise...

 $\mathcal{P}_r\Lambda^k(T^n)$ is the restriction of $\mathcal{P}_r\Lambda^k(\mathbb{R}^{n+1})$ to T^n . Likewise...

Definition (YBK)

$$\mathcal{P}_r^- \Lambda^k(\mathbb{R}^{n+1}) := i_X \mathcal{P}_{r-1} \Lambda^{k+1}(\mathbb{R}^{n+1})$$

 $\mathcal{P}_r\Lambda^k(T^n)$ is the restriction of $\mathcal{P}_r\Lambda^k(\mathbb{R}^{n+1})$ to T^n . Likewise...

Definition (YBK)

$$\mathcal{P}_r^- \Lambda^k(\mathbb{R}^{n+1}) := i_X \mathcal{P}_{r-1} \Lambda^{k+1}(\mathbb{R}^{n+1})$$

Let $\mathcal{P}_r^- \Lambda^k(T^n)$ be the restriction of $\mathcal{P}_r^- \Lambda^k(\mathbb{R}^{n+1})$ to T^n .

 $\mathcal{P}_r\Lambda^k(T^n)$ is the restriction of $\mathcal{P}_r\Lambda^k(\mathbb{R}^{n+1})$ to T^n . Likewise...

Definition (YBK)

$$\mathcal{P}_r^- \Lambda^k(\mathbb{R}^{n+1}) := i_X \mathcal{P}_{r-1} \Lambda^{k+1}(\mathbb{R}^{n+1})$$

Let $\mathcal{P}_r^- \Lambda^k(T^n)$ be the restriction of $\mathcal{P}_r^- \Lambda^k(\mathbb{R}^{n+1})$ to T^n .

Theorem (YBK)

The two definitions are equivalent.

Thank you