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The finite element method

Figure: Degrees of freedom (blue) of piecewise linear functions (left) and
piecewise quadratic functions (right).
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Geometric decomposition

= ⊕ 3 ⊕ 3

Figure: P3(T 2) = P̊3(T 2)⊕ 3P̊3(T 1)⊕ 3P̊3(T 0)

(P3(T 2))∗ ∼= (P̊3(T 2))∗ ⊕ 3(P̊3(T 1))∗ ⊕ 3(P̊3(T 0))∗

∼= P0(T 2) ⊕ 3P1(T 1) ⊕ 3P2(T 0)
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Duality

Definition

Let P and Q be spaces of functions T n → R.

e.g. P = P1(T 1), Q = P̊3(T 1))

Consider the pairing

(p, q) 7→
∫
T n

pq.

P and Q are dual to each other with respect to integration if
this pairing is a perfect pairing P ×Q → R.

For each nonzero p ∈ P there exists a q ∈ Q such that∫
T n pq > 0, and for each nonzero q there exists such a p.

Problem

Construct a bijection P → Q so that for nonzero p 7→ q we have

q only depends on p pointwise, and∫
T n pq > 0.
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Explicit pointwise duality

x

y

T 1 = {(x , y) | x + y = 1}

Figure: Barycentric coordinates

Example (Duality between P1(T 1) and P̊3(T 1))

For p ∈ P1(T 1), set q = (xy)p. Likewise, given q, set p = q
xy .

P1(T 1) P̊3(T 1)
∫
T 1 pq

x x2y
∫
T 1(xy)x2

y xy2
∫
T 1(xy)y2
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Finite element exterior calculus

Spaces PrΛk(T n) and P−
r Λk(T n) of k-forms on T n with

polynomial coefficients of degree at most r .

Special cases

scalar fields

Lagrange
Discontinuous Galerkin

vector fields

Brezzi–Douglas–Marini elements
Raviart–Thomas elements
Nédélec elements

Example

PrΛ1(T 3) and P−
r Λ1(T 3) are Nédélec H(curl) elements of the 2nd

and 1st kinds, respectively.

See Arnold, Falk, Winther, 2006.
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Duality in finite element exterior calculus

Theorem (Arnold, Falk, and Winther)

With respect to the integration pairing

(a, b) 7→
∫
T n

a ∧ b

PrΛk(T n) is dual to P̊−
r+k+1Λn−k(T n),

P−
r Λk(T n) is dual to P̊r+kΛn−k(T n).

Problem

Construct an explicit bijection between these spaces so that for
nonzero a 7→ b we have

b only depends on a pointwise, and∫
T n a ∧ b > 0.
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A motivating example

Let Ω be an 3-dimensional domain.

Λ1(Ω) and Λ2(Ω) are dual to each other with respect to
integration.

Explicit pointwise duality

Given nonzero a ∈ Λ1(Ω), let

a = ax dx + ay dy + az dz .

Define b ∈ Λ2(Ω) by

b = ax dy ∧ dz + ay dz ∧ dx + az dx ∧ dy =: ∗a.

b only depends on a pointwise.

. ∫
Ω
a ∧ b =

∫
Ω

(a2
x + a2

y + a2
z) dvol =

∫
Ω
‖a‖2 dvol > 0,
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The simplex and the sphere

T 2 consists of points in the first orthant with x + y + z = 1.

Via the change of coordinates

x = u2, y = v2, z = w2,

we obtain the unit sphere u2 + v2 + w2 = 1.

x

y

z

T 2

u

v

w

S2

Figure: Change of coordinates
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Explicit pointwise duality for finite element exterior calculus

Constructing the dual

1 Start with a ∈ Λk(T n).

2 Change coordinates to obtain α ∈ Λk(Sn).

3 Apply the Hodge star to obtain ∗Snα ∈ Λn−k(Sn).

4 Multiply by the coordinate functions to obtain β ∈ Λn−k(Sn).

in dimension 2, β = uvw(∗S2α).

5 Change coordinates back to obtain b ∈ Λn−k(T n).

Theorem (YBK)

b depends on a pointwise.∫
T n a ∧ b > 0 for nonzero a.

a ∈ PrΛk(T n) iff b ∈ P̊−
r+k+1Λn−k(T n).

a ∈ P−
r Λk(T n) iff b ∈ P̊r+kΛn−k(T n).
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Example 1

Change of coordinates

x = u2, y = v2, z = w2,

dx = 2u du, dy = 2v dv , dz = 2w dw .

Hodge star on the sphere

ν = u du + v dv + w dw ,

∗S2α = ∗R3(ν ∧ α).

Example

1 a = y dy ∈ P1Λ1(T 2).

2 α = 2v3 dv .

3 ∗S2α = 2uv3 dw − 2v3w du.

4 β = uvw(∗Snα) = 2u2v4w dw − 2uv4w2 du.

5 b = xy2 dz − y2z dx ∈ P̊−
3 Λ1(T 2).
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Example 2

Example

1 a = x dy − y dx ∈ P−
1 Λ1(T 2).

2 α = 2u2v dv − 2uv2 du.

3 . ∗S2α = 2((u3v + uv3)dw − u2vw du − uv2w dv)

= 2uv(u2 + v2 + w2) dw − uvw d(u2 + v2 + w2)

= 2uv dw .

4 β = uvw(∗S2α) = 2u2v2w dw .

5 b = xy dz ∈ P̊2Λ1(T 2).

Integration via u-substitution∫
T 2

a ∧ b =

∫
S2
>0

α ∧ β =

∫
S2
>0

uvw(α ∧ ∗S2α)

=

∫
S2
>0

uvw ‖α‖2 dArea > 0
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Correspondence between forms on T n and forms on Sn

Change of coordinates

x = u2, y = v2, z = w2,

dx = 2u du, dy = 2v dv , dz = 2w dw .

Definition

α ∈ Λk(Sn) is even if it is invariant under each coordinate
reflection. Let Λk

e (Sn) denote the space of such forms.

Example

u2 + v4w2 u du uvw2 du ∧ dv

Theorem (YBK)

The change of coordinates induces a bijection between PrΛk(T n)
and P2r+kΛk

e (Sn).
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Even and odd forms on the sphere

Definition

α ∈ Λk(Sn) is odd if it changes sign under each coordinate
reflection. Let Λk

o(Sn) denote the space of such forms.

Definition

Let uN denote the product of the coordinate functions.

In dimension 2, uN = uvw .

Proposition

If α is even, then ∗Snα is odd, and vice versa.

If α is even, then uNα is odd, and vice versa.

Proof.

Reflections reverse orientation, which changes the sign of ∗Sn .

uN is odd.
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Correspondences between forms on T n and forms on Sn

Theorem (YBK)

Let a ∈ PrΛk(T n) and α ∈ P2r+kΛk
e (Sn) correspond to each other

via the change of coordinates. Then for r ≥ 1,

a ∈ P−
r Λk(T n) ⇔ α ∈ ∗SnP2r+k−1Λn−k

o (Sn)

a ∈ P̊rΛk(T n) ⇔ α ∈ uNP2r+k−n−1Λk
o(Sn)

a ∈ P̊−
r Λk(T n) ⇔ α ∈ uN∗SnP2r+k−n−2Λn−k

e (Sn).

Explicit pointwise duality for PrΛk(T n) and P̊−
r+k+1Λn−k(T n)

1 a ∈ PrΛk(T n),

2 α ∈ P2r+kΛk
e (Sn),

3 ∗Snα ∈ ∗SnP2r+kΛk
e (Sn),

4 β = uN∗Snα ∈ uN∗SnP2r+kΛk
e (Sn),

5 b ∈ P̊−
r+k+1Λn−k(T n).
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Correspondences between forms on T n and forms on Sn
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(optional slide) Alternate characterizations of P−r Λk(T n)

Definition

Let X be the radial vector field

X = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
.

y
x

z

T 2

Let XT be the projection of the radial vector field to T n.

XT =
(
x − 1

3

) ∂
∂x

+
(
y − 1

3

) ∂

∂y
+
(
z − 1

3

) ∂
∂z
. T 2

Let iX : Λk(T 2)→ Λk−1(T 2) denote contraction.

Definition (Arnold, Falk, and Winther)

P−
r Λk(T n) := Pr−1Λk(T n) + iXT

Pr−1Λk+1(T n).
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(optional slide) Alternate characterizations of P−r Λk(T n)

PrΛk(T n) is the restriction of PrΛk(Rn+1) to T n. Likewise. . .

Definition (YBK)

P−
r Λk(Rn+1) := iXPr−1Λk+1(Rn+1)

Let P−
r Λk(T n) be the restriction of P−

r Λk(Rn+1) to T n.

Theorem (YBK)

The two definitions are equivalent.
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Thank you
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